Рассчитать высоту треугольника со сторонами 105, 94 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 94 + 72}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-105)(135.5-94)(135.5-72)}}{94}\normalsize = 70.2154398}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-105)(135.5-94)(135.5-72)}}{105}\normalsize = 62.8595366}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-105)(135.5-94)(135.5-72)}}{72}\normalsize = 91.6701575}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 94 и 72 равна 70.2154398
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 94 и 72 равна 62.8595366
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 94 и 72 равна 91.6701575
Ссылка на результат
?n1=105&n2=94&n3=72
Найти высоту треугольника со сторонами 139, 127 и 79
Найти высоту треугольника со сторонами 143, 105 и 70
Найти высоту треугольника со сторонами 102, 101 и 63
Найти высоту треугольника со сторонами 127, 107 и 39
Найти высоту треугольника со сторонами 130, 99 и 87
Найти высоту треугольника со сторонами 102, 69 и 46
Найти высоту треугольника со сторонами 143, 105 и 70
Найти высоту треугольника со сторонами 102, 101 и 63
Найти высоту треугольника со сторонами 127, 107 и 39
Найти высоту треугольника со сторонами 130, 99 и 87
Найти высоту треугольника со сторонами 102, 69 и 46