Рассчитать высоту треугольника со сторонами 109, 91 и 43

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 91 + 43}{2}} \normalsize = 121.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121.5(121.5-109)(121.5-91)(121.5-43)}}{91}\normalsize = 41.9098877}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121.5(121.5-109)(121.5-91)(121.5-43)}}{109}\normalsize = 34.9889888}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121.5(121.5-109)(121.5-91)(121.5-43)}}{43}\normalsize = 88.6930181}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 91 и 43 равна 41.9098877
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 91 и 43 равна 34.9889888
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 91 и 43 равна 88.6930181
Ссылка на результат
?n1=109&n2=91&n3=43