Рассчитать высоту треугольника со сторонами 112, 110 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 110 + 42}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-112)(132-110)(132-42)}}{110}\normalsize = 41.5692194}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-112)(132-110)(132-42)}}{112}\normalsize = 40.8269119}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-112)(132-110)(132-42)}}{42}\normalsize = 108.871765}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 110 и 42 равна 41.5692194
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 110 и 42 равна 40.8269119
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 110 и 42 равна 108.871765
Ссылка на результат
?n1=112&n2=110&n3=42
Найти высоту треугольника со сторонами 122, 95 и 66
Найти высоту треугольника со сторонами 127, 115 и 15
Найти высоту треугольника со сторонами 123, 118 и 117
Найти высоту треугольника со сторонами 111, 99 и 83
Найти высоту треугольника со сторонами 131, 124 и 35
Найти высоту треугольника со сторонами 124, 107 и 57
Найти высоту треугольника со сторонами 127, 115 и 15
Найти высоту треугольника со сторонами 123, 118 и 117
Найти высоту треугольника со сторонами 111, 99 и 83
Найти высоту треугольника со сторонами 131, 124 и 35
Найти высоту треугольника со сторонами 124, 107 и 57