Рассчитать высоту треугольника со сторонами 112, 90 и 58

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{112 + 90 + 58}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-112)(130-90)(130-58)}}{90}\normalsize = 57.6888204}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-112)(130-90)(130-58)}}{112}\normalsize = 46.3570878}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-112)(130-90)(130-58)}}{58}\normalsize = 89.5171351}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 112, 90 и 58 равна 57.6888204
Высота треугольника опущенная с вершины A на сторону BC со сторонами 112, 90 и 58 равна 46.3570878
Высота треугольника опущенная с вершины C на сторону AB со сторонами 112, 90 и 58 равна 89.5171351
Ссылка на результат
?n1=112&n2=90&n3=58