Рассчитать высоту треугольника со сторонами 114, 105 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 105 + 62}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-114)(140.5-105)(140.5-62)}}{105}\normalsize = 61.3551187}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-114)(140.5-105)(140.5-62)}}{114}\normalsize = 56.5112935}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-114)(140.5-105)(140.5-62)}}{62}\normalsize = 103.907862}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 105 и 62 равна 61.3551187
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 105 и 62 равна 56.5112935
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 105 и 62 равна 103.907862
Ссылка на результат
?n1=114&n2=105&n3=62
Найти высоту треугольника со сторонами 114, 88 и 82
Найти высоту треугольника со сторонами 139, 77 и 70
Найти высоту треугольника со сторонами 90, 90 и 43
Найти высоту треугольника со сторонами 110, 98 и 36
Найти высоту треугольника со сторонами 97, 95 и 19
Найти высоту треугольника со сторонами 145, 138 и 56
Найти высоту треугольника со сторонами 139, 77 и 70
Найти высоту треугольника со сторонами 90, 90 и 43
Найти высоту треугольника со сторонами 110, 98 и 36
Найти высоту треугольника со сторонами 97, 95 и 19
Найти высоту треугольника со сторонами 145, 138 и 56