Рассчитать высоту треугольника со сторонами 116, 91 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{116 + 91 + 80}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-116)(143.5-91)(143.5-80)}}{91}\normalsize = 79.7163518}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-116)(143.5-91)(143.5-80)}}{116}\normalsize = 62.5361036}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-116)(143.5-91)(143.5-80)}}{80}\normalsize = 90.6773502}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 116, 91 и 80 равна 79.7163518
Высота треугольника опущенная с вершины A на сторону BC со сторонами 116, 91 и 80 равна 62.5361036
Высота треугольника опущенная с вершины C на сторону AB со сторонами 116, 91 и 80 равна 90.6773502
Ссылка на результат
?n1=116&n2=91&n3=80
Найти высоту треугольника со сторонами 99, 82 и 78
Найти высоту треугольника со сторонами 133, 103 и 66
Найти высоту треугольника со сторонами 136, 133 и 57
Найти высоту треугольника со сторонами 109, 80 и 71
Найти высоту треугольника со сторонами 35, 35 и 33
Найти высоту треугольника со сторонами 53, 35 и 32
Найти высоту треугольника со сторонами 133, 103 и 66
Найти высоту треугольника со сторонами 136, 133 и 57
Найти высоту треугольника со сторонами 109, 80 и 71
Найти высоту треугольника со сторонами 35, 35 и 33
Найти высоту треугольника со сторонами 53, 35 и 32