Рассчитать высоту треугольника со сторонами 117, 72 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 72 + 50}{2}} \normalsize = 119.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119.5(119.5-117)(119.5-72)(119.5-50)}}{72}\normalsize = 27.5861227}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119.5(119.5-117)(119.5-72)(119.5-50)}}{117}\normalsize = 16.9760755}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119.5(119.5-117)(119.5-72)(119.5-50)}}{50}\normalsize = 39.7240167}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 72 и 50 равна 27.5861227
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 72 и 50 равна 16.9760755
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 72 и 50 равна 39.7240167
Ссылка на результат
?n1=117&n2=72&n3=50
Найти высоту треугольника со сторонами 99, 81 и 28
Найти высоту треугольника со сторонами 150, 98 и 53
Найти высоту треугольника со сторонами 80, 70 и 51
Найти высоту треугольника со сторонами 132, 118 и 73
Найти высоту треугольника со сторонами 89, 56 и 42
Найти высоту треугольника со сторонами 58, 45 и 22
Найти высоту треугольника со сторонами 150, 98 и 53
Найти высоту треугольника со сторонами 80, 70 и 51
Найти высоту треугольника со сторонами 132, 118 и 73
Найти высоту треугольника со сторонами 89, 56 и 42
Найти высоту треугольника со сторонами 58, 45 и 22