Рассчитать высоту треугольника со сторонами 119, 107 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 107 + 69}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-119)(147.5-107)(147.5-69)}}{107}\normalsize = 68.3324509}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-119)(147.5-107)(147.5-69)}}{119}\normalsize = 61.4417836}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-119)(147.5-107)(147.5-69)}}{69}\normalsize = 105.964815}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 107 и 69 равна 68.3324509
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 107 и 69 равна 61.4417836
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 107 и 69 равна 105.964815
Ссылка на результат
?n1=119&n2=107&n3=69
Найти высоту треугольника со сторонами 139, 125 и 74
Найти высоту треугольника со сторонами 98, 86 и 43
Найти высоту треугольника со сторонами 147, 101 и 69
Найти высоту треугольника со сторонами 111, 72 и 48
Найти высоту треугольника со сторонами 38, 35 и 18
Найти высоту треугольника со сторонами 135, 131 и 49
Найти высоту треугольника со сторонами 98, 86 и 43
Найти высоту треугольника со сторонами 147, 101 и 69
Найти высоту треугольника со сторонами 111, 72 и 48
Найти высоту треугольника со сторонами 38, 35 и 18
Найти высоту треугольника со сторонами 135, 131 и 49