Рассчитать высоту треугольника со сторонами 122, 109 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 109 + 83}{2}} \normalsize = 157}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157(157-122)(157-109)(157-83)}}{109}\normalsize = 81.0632151}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157(157-122)(157-109)(157-83)}}{122}\normalsize = 72.4253315}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157(157-122)(157-109)(157-83)}}{83}\normalsize = 106.456511}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 109 и 83 равна 81.0632151
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 109 и 83 равна 72.4253315
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 109 и 83 равна 106.456511
Ссылка на результат
?n1=122&n2=109&n3=83
Найти высоту треугольника со сторонами 142, 110 и 50
Найти высоту треугольника со сторонами 82, 69 и 44
Найти высоту треугольника со сторонами 108, 87 и 29
Найти высоту треугольника со сторонами 99, 77 и 77
Найти высоту треугольника со сторонами 97, 97 и 55
Найти высоту треугольника со сторонами 106, 93 и 32
Найти высоту треугольника со сторонами 82, 69 и 44
Найти высоту треугольника со сторонами 108, 87 и 29
Найти высоту треугольника со сторонами 99, 77 и 77
Найти высоту треугольника со сторонами 97, 97 и 55
Найти высоту треугольника со сторонами 106, 93 и 32