Рассчитать высоту треугольника со сторонами 123, 115 и 101
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 115 + 101}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-123)(169.5-115)(169.5-101)}}{115}\normalsize = 94.3380771}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-123)(169.5-115)(169.5-101)}}{123}\normalsize = 88.2022672}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-123)(169.5-115)(169.5-101)}}{101}\normalsize = 107.414642}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 115 и 101 равна 94.3380771
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 115 и 101 равна 88.2022672
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 115 и 101 равна 107.414642
Ссылка на результат
?n1=123&n2=115&n3=101
Найти высоту треугольника со сторонами 120, 116 и 93
Найти высоту треугольника со сторонами 94, 69 и 58
Найти высоту треугольника со сторонами 110, 99 и 74
Найти высоту треугольника со сторонами 107, 99 и 99
Найти высоту треугольника со сторонами 147, 100 и 53
Найти высоту треугольника со сторонами 101, 74 и 73
Найти высоту треугольника со сторонами 94, 69 и 58
Найти высоту треугольника со сторонами 110, 99 и 74
Найти высоту треугольника со сторонами 107, 99 и 99
Найти высоту треугольника со сторонами 147, 100 и 53
Найти высоту треугольника со сторонами 101, 74 и 73