Рассчитать высоту треугольника со сторонами 126, 110 и 45

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 110 + 45}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-126)(140.5-110)(140.5-45)}}{110}\normalsize = 44.2905506}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-126)(140.5-110)(140.5-45)}}{126}\normalsize = 38.6663537}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-126)(140.5-110)(140.5-45)}}{45}\normalsize = 108.26579}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 110 и 45 равна 44.2905506
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 110 и 45 равна 38.6663537
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 110 и 45 равна 108.26579
Ссылка на результат
?n1=126&n2=110&n3=45