Рассчитать высоту треугольника со сторонами 132, 93 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 93 + 67}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-132)(146-93)(146-67)}}{93}\normalsize = 62.9127941}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-132)(146-93)(146-67)}}{132}\normalsize = 44.3249231}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-132)(146-93)(146-67)}}{67}\normalsize = 87.3267141}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 93 и 67 равна 62.9127941
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 93 и 67 равна 44.3249231
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 93 и 67 равна 87.3267141
Ссылка на результат
?n1=132&n2=93&n3=67
Найти высоту треугольника со сторонами 128, 103 и 57
Найти высоту треугольника со сторонами 75, 65 и 44
Найти высоту треугольника со сторонами 53, 30 и 30
Найти высоту треугольника со сторонами 126, 99 и 66
Найти высоту треугольника со сторонами 123, 71 и 60
Найти высоту треугольника со сторонами 145, 107 и 87
Найти высоту треугольника со сторонами 75, 65 и 44
Найти высоту треугольника со сторонами 53, 30 и 30
Найти высоту треугольника со сторонами 126, 99 и 66
Найти высоту треугольника со сторонами 123, 71 и 60
Найти высоту треугольника со сторонами 145, 107 и 87