Рассчитать высоту треугольника со сторонами 134, 83 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 83 + 65}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-134)(141-83)(141-65)}}{83}\normalsize = 50.2610171}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-134)(141-83)(141-65)}}{134}\normalsize = 31.131824}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-134)(141-83)(141-65)}}{65}\normalsize = 64.1794526}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 83 и 65 равна 50.2610171
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 83 и 65 равна 31.131824
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 83 и 65 равна 64.1794526
Ссылка на результат
?n1=134&n2=83&n3=65
Найти высоту треугольника со сторонами 79, 66 и 63
Найти высоту треугольника со сторонами 133, 114 и 51
Найти высоту треугольника со сторонами 130, 114 и 57
Найти высоту треугольника со сторонами 71, 52 и 51
Найти высоту треугольника со сторонами 105, 64 и 42
Найти высоту треугольника со сторонами 94, 86 и 13
Найти высоту треугольника со сторонами 133, 114 и 51
Найти высоту треугольника со сторонами 130, 114 и 57
Найти высоту треугольника со сторонами 71, 52 и 51
Найти высоту треугольника со сторонами 105, 64 и 42
Найти высоту треугольника со сторонами 94, 86 и 13