Рассчитать высоту треугольника со сторонами 134, 90 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 90 + 67}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-134)(145.5-90)(145.5-67)}}{90}\normalsize = 59.9997199}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-134)(145.5-90)(145.5-67)}}{134}\normalsize = 40.2983193}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-134)(145.5-90)(145.5-67)}}{67}\normalsize = 80.5966387}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 90 и 67 равна 59.9997199
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 90 и 67 равна 40.2983193
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 90 и 67 равна 80.5966387
Ссылка на результат
?n1=134&n2=90&n3=67
Найти высоту треугольника со сторонами 117, 74 и 46
Найти высоту треугольника со сторонами 66, 63 и 43
Найти высоту треугольника со сторонами 143, 101 и 85
Найти высоту треугольника со сторонами 114, 88 и 78
Найти высоту треугольника со сторонами 120, 108 и 62
Найти высоту треугольника со сторонами 50, 47 и 21
Найти высоту треугольника со сторонами 66, 63 и 43
Найти высоту треугольника со сторонами 143, 101 и 85
Найти высоту треугольника со сторонами 114, 88 и 78
Найти высоту треугольника со сторонами 120, 108 и 62
Найти высоту треугольника со сторонами 50, 47 и 21