Рассчитать высоту треугольника со сторонами 138, 109 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 109 + 54}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-138)(150.5-109)(150.5-54)}}{109}\normalsize = 50.3633325}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-138)(150.5-109)(150.5-54)}}{138}\normalsize = 39.7797336}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-138)(150.5-109)(150.5-54)}}{54}\normalsize = 101.659319}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 109 и 54 равна 50.3633325
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 109 и 54 равна 39.7797336
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 109 и 54 равна 101.659319
Ссылка на результат
?n1=138&n2=109&n3=54
Найти высоту треугольника со сторонами 119, 77 и 57
Найти высоту треугольника со сторонами 88, 86 и 69
Найти высоту треугольника со сторонами 116, 90 и 27
Найти высоту треугольника со сторонами 115, 94 и 78
Найти высоту треугольника со сторонами 108, 68 и 47
Найти высоту треугольника со сторонами 99, 90 и 81
Найти высоту треугольника со сторонами 88, 86 и 69
Найти высоту треугольника со сторонами 116, 90 и 27
Найти высоту треугольника со сторонами 115, 94 и 78
Найти высоту треугольника со сторонами 108, 68 и 47
Найти высоту треугольника со сторонами 99, 90 и 81