Рассчитать высоту треугольника со сторонами 139, 115 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 115 + 25}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-115)(139.5-25)}}{115}\normalsize = 7.69289929}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-115)(139.5-25)}}{139}\normalsize = 6.36462891}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-115)(139.5-25)}}{25}\normalsize = 35.3873367}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 115 и 25 равна 7.69289929
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 115 и 25 равна 6.36462891
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 115 и 25 равна 35.3873367
Ссылка на результат
?n1=139&n2=115&n3=25
Найти высоту треугольника со сторонами 99, 91 и 28
Найти высоту треугольника со сторонами 58, 31 и 31
Найти высоту треугольника со сторонами 93, 63 и 42
Найти высоту треугольника со сторонами 116, 83 и 53
Найти высоту треугольника со сторонами 147, 140 и 108
Найти высоту треугольника со сторонами 111, 96 и 20
Найти высоту треугольника со сторонами 58, 31 и 31
Найти высоту треугольника со сторонами 93, 63 и 42
Найти высоту треугольника со сторонами 116, 83 и 53
Найти высоту треугольника со сторонами 147, 140 и 108
Найти высоту треугольника со сторонами 111, 96 и 20