Рассчитать высоту треугольника со сторонами 141, 110 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 110 + 55}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-141)(153-110)(153-55)}}{110}\normalsize = 50.5732559}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-141)(153-110)(153-55)}}{141}\normalsize = 39.4543131}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-141)(153-110)(153-55)}}{55}\normalsize = 101.146512}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 110 и 55 равна 50.5732559
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 110 и 55 равна 39.4543131
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 110 и 55 равна 101.146512
Ссылка на результат
?n1=141&n2=110&n3=55
Найти высоту треугольника со сторонами 88, 65 и 25
Найти высоту треугольника со сторонами 139, 122 и 63
Найти высоту треугольника со сторонами 109, 94 и 26
Найти высоту треугольника со сторонами 28, 24 и 6
Найти высоту треугольника со сторонами 47, 35 и 16
Найти высоту треугольника со сторонами 118, 112 и 44
Найти высоту треугольника со сторонами 139, 122 и 63
Найти высоту треугольника со сторонами 109, 94 и 26
Найти высоту треугольника со сторонами 28, 24 и 6
Найти высоту треугольника со сторонами 47, 35 и 16
Найти высоту треугольника со сторонами 118, 112 и 44