Рассчитать высоту треугольника со сторонами 142, 103 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 103 + 55}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-142)(150-103)(150-55)}}{103}\normalsize = 44.9463186}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-142)(150-103)(150-55)}}{142}\normalsize = 32.6019071}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-142)(150-103)(150-55)}}{55}\normalsize = 84.1721966}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 103 и 55 равна 44.9463186
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 103 и 55 равна 32.6019071
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 103 и 55 равна 84.1721966
Ссылка на результат
?n1=142&n2=103&n3=55
Найти высоту треугольника со сторонами 117, 114 и 106
Найти высоту треугольника со сторонами 115, 109 и 40
Найти высоту треугольника со сторонами 119, 115 и 103
Найти высоту треугольника со сторонами 146, 143 и 16
Найти высоту треугольника со сторонами 130, 122 и 77
Найти высоту треугольника со сторонами 142, 85 и 69
Найти высоту треугольника со сторонами 115, 109 и 40
Найти высоту треугольника со сторонами 119, 115 и 103
Найти высоту треугольника со сторонами 146, 143 и 16
Найти высоту треугольника со сторонами 130, 122 и 77
Найти высоту треугольника со сторонами 142, 85 и 69