Рассчитать высоту треугольника со сторонами 143, 111 и 52

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 111 + 52}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-143)(153-111)(153-52)}}{111}\normalsize = 45.9026823}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-143)(153-111)(153-52)}}{143}\normalsize = 35.6307534}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-143)(153-111)(153-52)}}{52}\normalsize = 97.9845719}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 111 и 52 равна 45.9026823
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 111 и 52 равна 35.6307534
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 111 и 52 равна 97.9845719
Ссылка на результат
?n1=143&n2=111&n3=52