Рассчитать высоту треугольника со сторонами 145, 132 и 116
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 132 + 116}{2}} \normalsize = 196.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{196.5(196.5-145)(196.5-132)(196.5-116)}}{132}\normalsize = 109.829436}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{196.5(196.5-145)(196.5-132)(196.5-116)}}{145}\normalsize = 99.9826591}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{196.5(196.5-145)(196.5-132)(196.5-116)}}{116}\normalsize = 124.978324}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 132 и 116 равна 109.829436
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 132 и 116 равна 99.9826591
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 132 и 116 равна 124.978324
Ссылка на результат
?n1=145&n2=132&n3=116
Найти высоту треугольника со сторонами 127, 111 и 43
Найти высоту треугольника со сторонами 123, 82 и 80
Найти высоту треугольника со сторонами 127, 124 и 43
Найти высоту треугольника со сторонами 121, 69 и 63
Найти высоту треугольника со сторонами 131, 124 и 90
Найти высоту треугольника со сторонами 56, 40 и 30
Найти высоту треугольника со сторонами 123, 82 и 80
Найти высоту треугольника со сторонами 127, 124 и 43
Найти высоту треугольника со сторонами 121, 69 и 63
Найти высоту треугольника со сторонами 131, 124 и 90
Найти высоту треугольника со сторонами 56, 40 и 30