Рассчитать высоту треугольника со сторонами 146, 118 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 118 + 55}{2}} \normalsize = 159.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159.5(159.5-146)(159.5-118)(159.5-55)}}{118}\normalsize = 51.7937564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159.5(159.5-146)(159.5-118)(159.5-55)}}{146}\normalsize = 41.8607072}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159.5(159.5-146)(159.5-118)(159.5-55)}}{55}\normalsize = 111.12115}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 118 и 55 равна 51.7937564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 118 и 55 равна 41.8607072
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 118 и 55 равна 111.12115
Ссылка на результат
?n1=146&n2=118&n3=55
Найти высоту треугольника со сторонами 49, 27 и 26
Найти высоту треугольника со сторонами 140, 94 и 76
Найти высоту треугольника со сторонами 125, 123 и 42
Найти высоту треугольника со сторонами 133, 108 и 66
Найти высоту треугольника со сторонами 101, 94 и 89
Найти высоту треугольника со сторонами 132, 119 и 18
Найти высоту треугольника со сторонами 140, 94 и 76
Найти высоту треугольника со сторонами 125, 123 и 42
Найти высоту треугольника со сторонами 133, 108 и 66
Найти высоту треугольника со сторонами 101, 94 и 89
Найти высоту треугольника со сторонами 132, 119 и 18