Рассчитать высоту треугольника со сторонами 146, 132 и 124
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 132 + 124}{2}} \normalsize = 201}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{201(201-146)(201-132)(201-124)}}{132}\normalsize = 116.11955}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{201(201-146)(201-132)(201-124)}}{146}\normalsize = 104.984799}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{201(201-146)(201-132)(201-124)}}{124}\normalsize = 123.611134}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 132 и 124 равна 116.11955
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 132 и 124 равна 104.984799
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 132 и 124 равна 123.611134
Ссылка на результат
?n1=146&n2=132&n3=124
Найти высоту треугольника со сторонами 117, 116 и 96
Найти высоту треугольника со сторонами 104, 66 и 62
Найти высоту треугольника со сторонами 144, 121 и 68
Найти высоту треугольника со сторонами 117, 102 и 26
Найти высоту треугольника со сторонами 71, 59 и 22
Найти высоту треугольника со сторонами 83, 82 и 46
Найти высоту треугольника со сторонами 104, 66 и 62
Найти высоту треугольника со сторонами 144, 121 и 68
Найти высоту треугольника со сторонами 117, 102 и 26
Найти высоту треугольника со сторонами 71, 59 и 22
Найти высоту треугольника со сторонами 83, 82 и 46