Рассчитать высоту треугольника со сторонами 147, 112 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 112 + 91}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-147)(175-112)(175-91)}}{112}\normalsize = 90.9326674}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-147)(175-112)(175-91)}}{147}\normalsize = 69.2820323}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-147)(175-112)(175-91)}}{91}\normalsize = 111.917129}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 112 и 91 равна 90.9326674
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 112 и 91 равна 69.2820323
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 112 и 91 равна 111.917129
Ссылка на результат
?n1=147&n2=112&n3=91
Найти высоту треугольника со сторонами 142, 116 и 31
Найти высоту треугольника со сторонами 95, 81 и 69
Найти высоту треугольника со сторонами 86, 66 и 27
Найти высоту треугольника со сторонами 111, 81 и 61
Найти высоту треугольника со сторонами 137, 127 и 105
Найти высоту треугольника со сторонами 127, 102 и 60
Найти высоту треугольника со сторонами 95, 81 и 69
Найти высоту треугольника со сторонами 86, 66 и 27
Найти высоту треугольника со сторонами 111, 81 и 61
Найти высоту треугольника со сторонами 137, 127 и 105
Найти высоту треугольника со сторонами 127, 102 и 60