Рассчитать высоту треугольника со сторонами 148, 145 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 145 + 12}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-148)(152.5-145)(152.5-12)}}{145}\normalsize = 11.7292965}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-148)(152.5-145)(152.5-12)}}{148}\normalsize = 11.4915405}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-148)(152.5-145)(152.5-12)}}{12}\normalsize = 141.729}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 145 и 12 равна 11.7292965
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 145 и 12 равна 11.4915405
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 145 и 12 равна 141.729
Ссылка на результат
?n1=148&n2=145&n3=12
Найти высоту треугольника со сторонами 119, 98 и 22
Найти высоту треугольника со сторонами 143, 104 и 65
Найти высоту треугольника со сторонами 109, 93 и 33
Найти высоту треугольника со сторонами 65, 43 и 24
Найти высоту треугольника со сторонами 136, 90 и 87
Найти высоту треугольника со сторонами 66, 56 и 54
Найти высоту треугольника со сторонами 143, 104 и 65
Найти высоту треугольника со сторонами 109, 93 и 33
Найти высоту треугольника со сторонами 65, 43 и 24
Найти высоту треугольника со сторонами 136, 90 и 87
Найти высоту треугольника со сторонами 66, 56 и 54