Рассчитать высоту треугольника со сторонами 150, 126 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 126 + 30}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-150)(153-126)(153-30)}}{126}\normalsize = 19.5974801}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-150)(153-126)(153-30)}}{150}\normalsize = 16.4618832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-150)(153-126)(153-30)}}{30}\normalsize = 82.3094162}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 126 и 30 равна 19.5974801
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 126 и 30 равна 16.4618832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 126 и 30 равна 82.3094162
Ссылка на результат
?n1=150&n2=126&n3=30
Найти высоту треугольника со сторонами 131, 131 и 57
Найти высоту треугольника со сторонами 109, 77 и 67
Найти высоту треугольника со сторонами 141, 133 и 64
Найти высоту треугольника со сторонами 141, 119 и 93
Найти высоту треугольника со сторонами 97, 80 и 67
Найти высоту треугольника со сторонами 125, 107 и 43
Найти высоту треугольника со сторонами 109, 77 и 67
Найти высоту треугольника со сторонами 141, 133 и 64
Найти высоту треугольника со сторонами 141, 119 и 93
Найти высоту треугольника со сторонами 97, 80 и 67
Найти высоту треугольника со сторонами 125, 107 и 43