Рассчитать высоту треугольника со сторонами 150, 135 и 129
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 135 + 129}{2}} \normalsize = 207}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{207(207-150)(207-135)(207-129)}}{135}\normalsize = 120.595854}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{207(207-150)(207-135)(207-129)}}{150}\normalsize = 108.536269}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{207(207-150)(207-135)(207-129)}}{129}\normalsize = 126.204963}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 135 и 129 равна 120.595854
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 135 и 129 равна 108.536269
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 135 и 129 равна 126.204963
Ссылка на результат
?n1=150&n2=135&n3=129
Найти высоту треугольника со сторонами 109, 104 и 9
Найти высоту треугольника со сторонами 127, 93 и 61
Найти высоту треугольника со сторонами 135, 100 и 99
Найти высоту треугольника со сторонами 111, 72 и 40
Найти высоту треугольника со сторонами 88, 73 и 66
Найти высоту треугольника со сторонами 141, 127 и 92
Найти высоту треугольника со сторонами 127, 93 и 61
Найти высоту треугольника со сторонами 135, 100 и 99
Найти высоту треугольника со сторонами 111, 72 и 40
Найти высоту треугольника со сторонами 88, 73 и 66
Найти высоту треугольника со сторонами 141, 127 и 92