Рассчитать высоту треугольника со сторонами 21, 17 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{21 + 17 + 13}{2}} \normalsize = 25.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{25.5(25.5-21)(25.5-17)(25.5-13)}}{17}\normalsize = 12.9903811}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{25.5(25.5-21)(25.5-17)(25.5-13)}}{21}\normalsize = 10.5160228}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{25.5(25.5-21)(25.5-17)(25.5-13)}}{13}\normalsize = 16.9874214}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 21, 17 и 13 равна 12.9903811
Высота треугольника опущенная с вершины A на сторону BC со сторонами 21, 17 и 13 равна 10.5160228
Высота треугольника опущенная с вершины C на сторону AB со сторонами 21, 17 и 13 равна 16.9874214
Ссылка на результат
?n1=21&n2=17&n3=13
Найти высоту треугольника со сторонами 96, 72 и 71
Найти высоту треугольника со сторонами 105, 97 и 17
Найти высоту треугольника со сторонами 118, 76 и 73
Найти высоту треугольника со сторонами 130, 115 и 52
Найти высоту треугольника со сторонами 100, 91 и 18
Найти высоту треугольника со сторонами 142, 132 и 88
Найти высоту треугольника со сторонами 105, 97 и 17
Найти высоту треугольника со сторонами 118, 76 и 73
Найти высоту треугольника со сторонами 130, 115 и 52
Найти высоту треугольника со сторонами 100, 91 и 18
Найти высоту треугольника со сторонами 142, 132 и 88