Рассчитать высоту треугольника со сторонами 22, 16 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{22 + 16 + 11}{2}} \normalsize = 24.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{24.5(24.5-22)(24.5-16)(24.5-11)}}{16}\normalsize = 10.4794721}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{24.5(24.5-22)(24.5-16)(24.5-11)}}{22}\normalsize = 7.62143427}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{24.5(24.5-22)(24.5-16)(24.5-11)}}{11}\normalsize = 15.2428685}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 22, 16 и 11 равна 10.4794721
Высота треугольника опущенная с вершины A на сторону BC со сторонами 22, 16 и 11 равна 7.62143427
Высота треугольника опущенная с вершины C на сторону AB со сторонами 22, 16 и 11 равна 15.2428685
Ссылка на результат
?n1=22&n2=16&n3=11
Найти высоту треугольника со сторонами 149, 140 и 48
Найти высоту треугольника со сторонами 114, 101 и 100
Найти высоту треугольника со сторонами 128, 120 и 26
Найти высоту треугольника со сторонами 106, 75 и 51
Найти высоту треугольника со сторонами 148, 115 и 67
Найти высоту треугольника со сторонами 78, 72 и 61
Найти высоту треугольника со сторонами 114, 101 и 100
Найти высоту треугольника со сторонами 128, 120 и 26
Найти высоту треугольника со сторонами 106, 75 и 51
Найти высоту треугольника со сторонами 148, 115 и 67
Найти высоту треугольника со сторонами 78, 72 и 61