Рассчитать высоту треугольника со сторонами 24, 19 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{24 + 19 + 7}{2}} \normalsize = 25}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{25(25-24)(25-19)(25-7)}}{19}\normalsize = 5.46963413}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{25(25-24)(25-19)(25-7)}}{24}\normalsize = 4.33012702}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{25(25-24)(25-19)(25-7)}}{7}\normalsize = 14.8461498}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 24, 19 и 7 равна 5.46963413
Высота треугольника опущенная с вершины A на сторону BC со сторонами 24, 19 и 7 равна 4.33012702
Высота треугольника опущенная с вершины C на сторону AB со сторонами 24, 19 и 7 равна 14.8461498
Ссылка на результат
?n1=24&n2=19&n3=7
Найти высоту треугольника со сторонами 141, 139 и 131
Найти высоту треугольника со сторонами 136, 92 и 58
Найти высоту треугольника со сторонами 148, 130 и 51
Найти высоту треугольника со сторонами 135, 113 и 59
Найти высоту треугольника со сторонами 141, 122 и 58
Найти высоту треугольника со сторонами 96, 95 и 78
Найти высоту треугольника со сторонами 136, 92 и 58
Найти высоту треугольника со сторонами 148, 130 и 51
Найти высоту треугольника со сторонами 135, 113 и 59
Найти высоту треугольника со сторонами 141, 122 и 58
Найти высоту треугольника со сторонами 96, 95 и 78