Рассчитать высоту треугольника со сторонами 26, 25 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{26 + 25 + 7}{2}} \normalsize = 29}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{29(29-26)(29-25)(29-7)}}{25}\normalsize = 6.99988571}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{29(29-26)(29-25)(29-7)}}{26}\normalsize = 6.73065934}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{29(29-26)(29-25)(29-7)}}{7}\normalsize = 24.9995918}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 26, 25 и 7 равна 6.99988571
Высота треугольника опущенная с вершины A на сторону BC со сторонами 26, 25 и 7 равна 6.73065934
Высота треугольника опущенная с вершины C на сторону AB со сторонами 26, 25 и 7 равна 24.9995918
Ссылка на результат
?n1=26&n2=25&n3=7
Найти высоту треугольника со сторонами 118, 107 и 65
Найти высоту треугольника со сторонами 122, 121 и 115
Найти высоту треугольника со сторонами 147, 109 и 40
Найти высоту треугольника со сторонами 129, 127 и 16
Найти высоту треугольника со сторонами 90, 88 и 20
Найти высоту треугольника со сторонами 97, 68 и 49
Найти высоту треугольника со сторонами 122, 121 и 115
Найти высоту треугольника со сторонами 147, 109 и 40
Найти высоту треугольника со сторонами 129, 127 и 16
Найти высоту треугольника со сторонами 90, 88 и 20
Найти высоту треугольника со сторонами 97, 68 и 49