Рассчитать высоту треугольника со сторонами 40, 34 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{40 + 34 + 34}{2}} \normalsize = 54}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54(54-40)(54-34)(54-34)}}{34}\normalsize = 32.3475931}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54(54-40)(54-34)(54-34)}}{40}\normalsize = 27.4954542}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54(54-40)(54-34)(54-34)}}{34}\normalsize = 32.3475931}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 40, 34 и 34 равна 32.3475931
Высота треугольника опущенная с вершины A на сторону BC со сторонами 40, 34 и 34 равна 27.4954542
Высота треугольника опущенная с вершины C на сторону AB со сторонами 40, 34 и 34 равна 32.3475931
Ссылка на результат
?n1=40&n2=34&n3=34
Найти высоту треугольника со сторонами 133, 111 и 52
Найти высоту треугольника со сторонами 97, 79 и 40
Найти высоту треугольника со сторонами 64, 33 и 33
Найти высоту треугольника со сторонами 130, 121 и 71
Найти высоту треугольника со сторонами 101, 76 и 48
Найти высоту треугольника со сторонами 98, 80 и 63
Найти высоту треугольника со сторонами 97, 79 и 40
Найти высоту треугольника со сторонами 64, 33 и 33
Найти высоту треугольника со сторонами 130, 121 и 71
Найти высоту треугольника со сторонами 101, 76 и 48
Найти высоту треугольника со сторонами 98, 80 и 63