Рассчитать высоту треугольника со сторонами 51, 44 и 41

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 44 + 41}{2}} \normalsize = 68}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68(68-51)(68-44)(68-41)}}{44}\normalsize = 39.34085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68(68-51)(68-44)(68-41)}}{51}\normalsize = 33.9411255}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68(68-51)(68-44)(68-41)}}{41}\normalsize = 42.2194488}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 44 и 41 равна 39.34085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 44 и 41 равна 33.9411255
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 44 и 41 равна 42.2194488
Ссылка на результат
?n1=51&n2=44&n3=41