Рассчитать высоту треугольника со сторонами 62, 56 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 56 + 40}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-62)(79-56)(79-40)}}{56}\normalsize = 39.1991091}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-62)(79-56)(79-40)}}{62}\normalsize = 35.4056469}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-62)(79-56)(79-40)}}{40}\normalsize = 54.8787527}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 56 и 40 равна 39.1991091
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 56 и 40 равна 35.4056469
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 56 и 40 равна 54.8787527
Ссылка на результат
?n1=62&n2=56&n3=40
Найти высоту треугольника со сторонами 115, 72 и 60
Найти высоту треугольника со сторонами 145, 125 и 67
Найти высоту треугольника со сторонами 38, 37 и 15
Найти высоту треугольника со сторонами 116, 87 и 81
Найти высоту треугольника со сторонами 77, 43 и 36
Найти высоту треугольника со сторонами 134, 121 и 108
Найти высоту треугольника со сторонами 145, 125 и 67
Найти высоту треугольника со сторонами 38, 37 и 15
Найти высоту треугольника со сторонами 116, 87 и 81
Найти высоту треугольника со сторонами 77, 43 и 36
Найти высоту треугольника со сторонами 134, 121 и 108