Рассчитать высоту треугольника со сторонами 63, 52 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 52 + 14}{2}} \normalsize = 64.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64.5(64.5-63)(64.5-52)(64.5-14)}}{52}\normalsize = 9.50501561}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64.5(64.5-63)(64.5-52)(64.5-14)}}{63}\normalsize = 7.84540971}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64.5(64.5-63)(64.5-52)(64.5-14)}}{14}\normalsize = 35.3043437}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 52 и 14 равна 9.50501561
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 52 и 14 равна 7.84540971
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 52 и 14 равна 35.3043437
Ссылка на результат
?n1=63&n2=52&n3=14
Найти высоту треугольника со сторонами 128, 123 и 12
Найти высоту треугольника со сторонами 137, 134 и 116
Найти высоту треугольника со сторонами 82, 61 и 47
Найти высоту треугольника со сторонами 116, 86 и 74
Найти высоту треугольника со сторонами 43, 32 и 23
Найти высоту треугольника со сторонами 134, 133 и 43
Найти высоту треугольника со сторонами 137, 134 и 116
Найти высоту треугольника со сторонами 82, 61 и 47
Найти высоту треугольника со сторонами 116, 86 и 74
Найти высоту треугольника со сторонами 43, 32 и 23
Найти высоту треугольника со сторонами 134, 133 и 43