Рассчитать высоту треугольника со сторонами 70, 63 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 63 + 9}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-70)(71-63)(71-9)}}{63}\normalsize = 5.95743701}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-70)(71-63)(71-9)}}{70}\normalsize = 5.36169331}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-70)(71-63)(71-9)}}{9}\normalsize = 41.702059}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 63 и 9 равна 5.95743701
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 63 и 9 равна 5.36169331
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 63 и 9 равна 41.702059
Ссылка на результат
?n1=70&n2=63&n3=9
Найти высоту треугольника со сторонами 133, 123 и 109
Найти высоту треугольника со сторонами 150, 147 и 104
Найти высоту треугольника со сторонами 133, 128 и 63
Найти высоту треугольника со сторонами 140, 138 и 106
Найти высоту треугольника со сторонами 147, 144 и 63
Найти высоту треугольника со сторонами 97, 97 и 16
Найти высоту треугольника со сторонами 150, 147 и 104
Найти высоту треугольника со сторонами 133, 128 и 63
Найти высоту треугольника со сторонами 140, 138 и 106
Найти высоту треугольника со сторонами 147, 144 и 63
Найти высоту треугольника со сторонами 97, 97 и 16