Рассчитать высоту треугольника со сторонами 70, 67 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 67 + 12}{2}} \normalsize = 74.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74.5(74.5-70)(74.5-67)(74.5-12)}}{67}\normalsize = 11.8334186}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74.5(74.5-70)(74.5-67)(74.5-12)}}{70}\normalsize = 11.3262721}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74.5(74.5-70)(74.5-67)(74.5-12)}}{12}\normalsize = 66.0699203}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 67 и 12 равна 11.8334186
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 67 и 12 равна 11.3262721
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 67 и 12 равна 66.0699203
Ссылка на результат
?n1=70&n2=67&n3=12
Найти высоту треугольника со сторонами 141, 128 и 19
Найти высоту треугольника со сторонами 148, 107 и 102
Найти высоту треугольника со сторонами 94, 77 и 42
Найти высоту треугольника со сторонами 113, 111 и 30
Найти высоту треугольника со сторонами 110, 80 и 73
Найти высоту треугольника со сторонами 119, 62 и 58
Найти высоту треугольника со сторонами 148, 107 и 102
Найти высоту треугольника со сторонами 94, 77 и 42
Найти высоту треугольника со сторонами 113, 111 и 30
Найти высоту треугольника со сторонами 110, 80 и 73
Найти высоту треугольника со сторонами 119, 62 и 58