Рассчитать высоту треугольника со сторонами 72, 52 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 52 + 42}{2}} \normalsize = 83}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83(83-72)(83-52)(83-42)}}{52}\normalsize = 41.4318968}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83(83-72)(83-52)(83-42)}}{72}\normalsize = 29.9230366}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83(83-72)(83-52)(83-42)}}{42}\normalsize = 51.2966341}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 52 и 42 равна 41.4318968
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 52 и 42 равна 29.9230366
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 52 и 42 равна 51.2966341
Ссылка на результат
?n1=72&n2=52&n3=42
Найти высоту треугольника со сторонами 111, 109 и 31
Найти высоту треугольника со сторонами 115, 91 и 85
Найти высоту треугольника со сторонами 86, 57 и 46
Найти высоту треугольника со сторонами 135, 123 и 27
Найти высоту треугольника со сторонами 133, 100 и 38
Найти высоту треугольника со сторонами 43, 42 и 32
Найти высоту треугольника со сторонами 115, 91 и 85
Найти высоту треугольника со сторонами 86, 57 и 46
Найти высоту треугольника со сторонами 135, 123 и 27
Найти высоту треугольника со сторонами 133, 100 и 38
Найти высоту треугольника со сторонами 43, 42 и 32