Рассчитать высоту треугольника со сторонами 74, 52 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 52 + 41}{2}} \normalsize = 83.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83.5(83.5-74)(83.5-52)(83.5-41)}}{52}\normalsize = 39.6352347}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83.5(83.5-74)(83.5-52)(83.5-41)}}{74}\normalsize = 27.8517866}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83.5(83.5-74)(83.5-52)(83.5-41)}}{41}\normalsize = 50.2690782}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 52 и 41 равна 39.6352347
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 52 и 41 равна 27.8517866
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 52 и 41 равна 50.2690782
Ссылка на результат
?n1=74&n2=52&n3=41
Найти высоту треугольника со сторонами 132, 129 и 69
Найти высоту треугольника со сторонами 116, 113 и 38
Найти высоту треугольника со сторонами 90, 67 и 44
Найти высоту треугольника со сторонами 142, 100 и 74
Найти высоту треугольника со сторонами 132, 127 и 96
Найти высоту треугольника со сторонами 150, 143 и 69
Найти высоту треугольника со сторонами 116, 113 и 38
Найти высоту треугольника со сторонами 90, 67 и 44
Найти высоту треугольника со сторонами 142, 100 и 74
Найти высоту треугольника со сторонами 132, 127 и 96
Найти высоту треугольника со сторонами 150, 143 и 69