Рассчитать высоту треугольника со сторонами 79, 59 и 48

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 59 + 48}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-79)(93-59)(93-48)}}{59}\normalsize = 47.8441884}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-79)(93-59)(93-48)}}{79}\normalsize = 35.7317356}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-79)(93-59)(93-48)}}{48}\normalsize = 58.8084815}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 59 и 48 равна 47.8441884
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 59 и 48 равна 35.7317356
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 59 и 48 равна 58.8084815
Ссылка на результат
?n1=79&n2=59&n3=48