Рассчитать высоту треугольника со сторонами 79, 70 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 70 + 49}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-79)(99-70)(99-49)}}{70}\normalsize = 48.4115014}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-79)(99-70)(99-49)}}{79}\normalsize = 42.8962671}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-79)(99-70)(99-49)}}{49}\normalsize = 69.1592877}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 70 и 49 равна 48.4115014
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 70 и 49 равна 42.8962671
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 70 и 49 равна 69.1592877
Ссылка на результат
?n1=79&n2=70&n3=49
Найти высоту треугольника со сторонами 148, 131 и 112
Найти высоту треугольника со сторонами 74, 70 и 42
Найти высоту треугольника со сторонами 125, 78 и 63
Найти высоту треугольника со сторонами 113, 91 и 39
Найти высоту треугольника со сторонами 116, 116 и 101
Найти высоту треугольника со сторонами 32, 32 и 8
Найти высоту треугольника со сторонами 74, 70 и 42
Найти высоту треугольника со сторонами 125, 78 и 63
Найти высоту треугольника со сторонами 113, 91 и 39
Найти высоту треугольника со сторонами 116, 116 и 101
Найти высоту треугольника со сторонами 32, 32 и 8