Рассчитать высоту треугольника со сторонами 84, 69 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 69 + 22}{2}} \normalsize = 87.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87.5(87.5-84)(87.5-69)(87.5-22)}}{69}\normalsize = 17.6573477}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87.5(87.5-84)(87.5-69)(87.5-22)}}{84}\normalsize = 14.5042499}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87.5(87.5-84)(87.5-69)(87.5-22)}}{22}\normalsize = 55.3798631}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 69 и 22 равна 17.6573477
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 69 и 22 равна 14.5042499
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 69 и 22 равна 55.3798631
Ссылка на результат
?n1=84&n2=69&n3=22
Найти высоту треугольника со сторонами 73, 54 и 30
Найти высоту треугольника со сторонами 137, 87 и 69
Найти высоту треугольника со сторонами 84, 69 и 54
Найти высоту треугольника со сторонами 82, 65 и 21
Найти высоту треугольника со сторонами 144, 138 и 58
Найти высоту треугольника со сторонами 150, 135 и 92
Найти высоту треугольника со сторонами 137, 87 и 69
Найти высоту треугольника со сторонами 84, 69 и 54
Найти высоту треугольника со сторонами 82, 65 и 21
Найти высоту треугольника со сторонами 144, 138 и 58
Найти высоту треугольника со сторонами 150, 135 и 92