Рассчитать высоту треугольника со сторонами 85, 73 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 73 + 51}{2}} \normalsize = 104.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104.5(104.5-85)(104.5-73)(104.5-51)}}{73}\normalsize = 50.7708874}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104.5(104.5-85)(104.5-73)(104.5-51)}}{85}\normalsize = 43.6032327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104.5(104.5-85)(104.5-73)(104.5-51)}}{51}\normalsize = 72.6720545}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 73 и 51 равна 50.7708874
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 73 и 51 равна 43.6032327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 73 и 51 равна 72.6720545
Ссылка на результат
?n1=85&n2=73&n3=51
Найти высоту треугольника со сторонами 130, 94 и 45
Найти высоту треугольника со сторонами 150, 150 и 46
Найти высоту треугольника со сторонами 51, 40 и 40
Найти высоту треугольника со сторонами 125, 108 и 104
Найти высоту треугольника со сторонами 71, 44 и 28
Найти высоту треугольника со сторонами 55, 48 и 40
Найти высоту треугольника со сторонами 150, 150 и 46
Найти высоту треугольника со сторонами 51, 40 и 40
Найти высоту треугольника со сторонами 125, 108 и 104
Найти высоту треугольника со сторонами 71, 44 и 28
Найти высоту треугольника со сторонами 55, 48 и 40