Рассчитать высоту треугольника со сторонами 88, 73 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 73 + 29}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-88)(95-73)(95-29)}}{73}\normalsize = 26.9216247}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-88)(95-73)(95-29)}}{88}\normalsize = 22.3327114}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-88)(95-73)(95-29)}}{29}\normalsize = 67.7682278}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 73 и 29 равна 26.9216247
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 73 и 29 равна 22.3327114
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 73 и 29 равна 67.7682278
Ссылка на результат
?n1=88&n2=73&n3=29
Найти высоту треугольника со сторонами 139, 79 и 70
Найти высоту треугольника со сторонами 150, 98 и 77
Найти высоту треугольника со сторонами 139, 136 и 45
Найти высоту треугольника со сторонами 138, 117 и 105
Найти высоту треугольника со сторонами 119, 111 и 79
Найти высоту треугольника со сторонами 85, 81 и 42
Найти высоту треугольника со сторонами 150, 98 и 77
Найти высоту треугольника со сторонами 139, 136 и 45
Найти высоту треугольника со сторонами 138, 117 и 105
Найти высоту треугольника со сторонами 119, 111 и 79
Найти высоту треугольника со сторонами 85, 81 и 42