Рассчитать высоту треугольника со сторонами 90, 88 и 80

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 88 + 80}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-90)(129-88)(129-80)}}{88}\normalsize = 72.2544252}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-90)(129-88)(129-80)}}{90}\normalsize = 70.6487713}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-90)(129-88)(129-80)}}{80}\normalsize = 79.4798677}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 88 и 80 равна 72.2544252
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 88 и 80 равна 70.6487713
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 88 и 80 равна 79.4798677
Ссылка на результат
?n1=90&n2=88&n3=80