Рассчитать высоту треугольника со сторонами 95, 87 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 87 + 37}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-95)(109.5-87)(109.5-37)}}{87}\normalsize = 36.9966215}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-95)(109.5-87)(109.5-37)}}{95}\normalsize = 33.8811165}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-95)(109.5-87)(109.5-37)}}{37}\normalsize = 86.9920559}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 87 и 37 равна 36.9966215
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 87 и 37 равна 33.8811165
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 87 и 37 равна 86.9920559
Ссылка на результат
?n1=95&n2=87&n3=37
Найти высоту треугольника со сторонами 139, 101 и 47
Найти высоту треугольника со сторонами 81, 81 и 42
Найти высоту треугольника со сторонами 88, 76 и 69
Найти высоту треугольника со сторонами 95, 92 и 12
Найти высоту треугольника со сторонами 148, 126 и 74
Найти высоту треугольника со сторонами 107, 68 и 50
Найти высоту треугольника со сторонами 81, 81 и 42
Найти высоту треугольника со сторонами 88, 76 и 69
Найти высоту треугольника со сторонами 95, 92 и 12
Найти высоту треугольника со сторонами 148, 126 и 74
Найти высоту треугольника со сторонами 107, 68 и 50