Рассчитать высоту треугольника со сторонами 96, 67 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 67 + 43}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-96)(103-67)(103-43)}}{67}\normalsize = 37.2520091}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-96)(103-67)(103-43)}}{96}\normalsize = 25.998798}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-96)(103-67)(103-43)}}{43}\normalsize = 58.0438282}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 67 и 43 равна 37.2520091
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 67 и 43 равна 25.998798
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 67 и 43 равна 58.0438282
Ссылка на результат
?n1=96&n2=67&n3=43
Найти высоту треугольника со сторонами 105, 78 и 31
Найти высоту треугольника со сторонами 70, 54 и 31
Найти высоту треугольника со сторонами 35, 32 и 14
Найти высоту треугольника со сторонами 130, 90 и 79
Найти высоту треугольника со сторонами 60, 49 и 17
Найти высоту треугольника со сторонами 129, 108 и 42
Найти высоту треугольника со сторонами 70, 54 и 31
Найти высоту треугольника со сторонами 35, 32 и 14
Найти высоту треугольника со сторонами 130, 90 и 79
Найти высоту треугольника со сторонами 60, 49 и 17
Найти высоту треугольника со сторонами 129, 108 и 42