Рассчитать высоту треугольника со сторонами 96, 95 и 3
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 95 + 3}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-96)(97-95)(97-3)}}{95}\normalsize = 2.84296283}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-96)(97-95)(97-3)}}{96}\normalsize = 2.81334864}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-96)(97-95)(97-3)}}{3}\normalsize = 90.0271564}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 95 и 3 равна 2.84296283
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 95 и 3 равна 2.81334864
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 95 и 3 равна 90.0271564
Ссылка на результат
?n1=96&n2=95&n3=3
Найти высоту треугольника со сторонами 137, 125 и 33
Найти высоту треугольника со сторонами 105, 104 и 100
Найти высоту треугольника со сторонами 141, 113 и 82
Найти высоту треугольника со сторонами 137, 119 и 64
Найти высоту треугольника со сторонами 136, 122 и 114
Найти высоту треугольника со сторонами 60, 53 и 52
Найти высоту треугольника со сторонами 105, 104 и 100
Найти высоту треугольника со сторонами 141, 113 и 82
Найти высоту треугольника со сторонами 137, 119 и 64
Найти высоту треугольника со сторонами 136, 122 и 114
Найти высоту треугольника со сторонами 60, 53 и 52