Разложить на множители трёхчлен y=5x²+30x+45

y=x2+x+
Дано
Квадратный трёхчлен y=5x²+30x+45
Задача
Разложить на множители
Решение
Вычислим дискриминант
\(\large D=b^2-4ac=\) \(\large30^2-4\times 5\times 45=0\)
Т.к. дискриминант равен нулю, уравнение имеет один корень
\(\large x=\) \(\LARGE\frac{-b}{2a}\) \(\large=\) \(\LARGE\frac{-30}{2 \times 5}\) \(\large=-3\)
Уравнение y=5x²+30x+45 имеет один корень x=-3.
Воспользуемся формулой разложения квадратного трёхчлена на множители
\(\large ax^2+bx+c=a(x-x_1)(x-x_2)\)
Так как у нас один корень то вместо x1 и x2 записываем его
5x²+30x+45=5(x-(-3))(x-(-3))
5x²+30x+45=5(x+3)(x+3)
Правила ввода

Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.

Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.

Ссылка на результат
https://calc-best.ru/matematicheskie/razlozhenie-trekhchlena-na-mnozhiteli?n1=5&n2=30&n3=45
Похожие калькуляторы