Разложить на множители трёхчлен y=52x²+52x+13
y=x2+x+
Дано
Квадратный трёхчлен y=52x²+52x+13
Задача
Разложить на множители
Решение
Вычислим дискриминант
\(\large D=b^2-4ac=\) \(\large52^2-4\times 52\times 13=0\)
Т.к. дискриминант равен нулю, уравнение имеет один корень
\(\large x=\) \(\LARGE\frac{-b}{2a}\) \(\large=\) \(\LARGE\frac{-52}{2 \times 52}\) \(\large=-1/2\)
Уравнение y=52x²+52x+13 имеет один корень x=-1/2.
Воспользуемся формулой разложения квадратного трёхчлена на множители
\(\large ax^2+bx+c=a(x-x_1)(x-x_2)\)
Так как у нас один корень то вместо x1 и x2 записываем его
52x²+52x+13=52(x-(-1/2))(x-(-1/2))
52x²+52x+13=52(x+1/2)(x+1/2)
Правила ввода
Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.
Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.
Ссылка на результат
https://calc-best.ru/matematicheskie/razlozhenie-trekhchlena-na-mnozhiteli?n1=52&n2=52&n3=13
Похожие калькуляторы