Вычислить корни квадратного уравнения -20x²-83x-30=0
x2+x+=0
Дано
Квадратное уравнение -20x²-83x-30=0
Задача
Найти корни уравнения
Решение
Вычислим дискриминант
\(\large D=b^2-4ac=\) \(\large(-83)^2-4\times (-20)\times (-30)=4489\)
\(\large x_1=\) \(\LARGE\frac{-b+\sqrt{D}}{2a}\) \(\large=\) \(\LARGE\frac{-(-83)+\sqrt{4489}}{2 \times (-20)}\) \(\large=\) \(\large-3.75\)
\(\large x_2=\) \(\LARGE\frac{-b-\sqrt{D}}{2a}\) \(\large=\) \(\LARGE\frac{-(-83)-\sqrt{4489}}{2 \times (-20)}\) \(\large=\) \(\large-0.4\)
Уравнение -20x²-83x-30=0 имеет два корня x₁=-3.75, x₂=-0.4.
Ссылка на результат
https://calc-best.ru/matematicheskie/reshenie-kvadratnykh-uravnenij?n1=-20&n2=-83&n3=-30
Правила ввода
Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.
Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.
Похожие калькуляторы